Identifying AI opportunities in healthcare

AI has enormous potential to improve healthcare delivery across the globe, and some practical applications could benefit investors.
Andy Acker

Janus Henderson

As artificial intelligence plays a bigger role in the global economy, one area where the technology is expected to have a substantial impact is healthcare.

Nvidia, the leading provider of AI computing power, says healthcare currently makes up only about 1% of its $100 billion data center business. But that figure is projected to grow exponentially, with healthcare likely becoming the biggest vertical in its data center segment within a decade.

In the meantime, some AI applications are already making a difference to both patient outcomes and company revenues. We see three key areas where AI’s potential is turning into real benefits in healthcare.

Data building for drug discovery

Typically, it takes at least 10 years and billions of dollars of investment for a company to bring a new therapy to market. But AI algorithms could help speed at least one part of the research and development process – target identification and drug discovery.

Today, new AI algorithms are being developed to identify drug targets and create molecules based on modeling of biological and chemical datasets. Advances continue to be made, with new tools now able to decode the shape of proteins – large complex molecules in human cells that drive the structure, function, and regulation of the body’s tissues and organs – and how they interact with other molecular systems in the body, DNA,1 RNA,2 and ligands (molecules that bind to a receiving protein molecule, or receptor). Such level of complexity could lead researchers to an even deeper understanding of the biology of disease and speed up the process/lower the cost of bringing new drugs to market.

The Huntingtin protein, coded by the HTT gene. Mutated HTT leads to Huntington’s disease.

Source: Getty Images.Source: Getty Images.

Source: Getty Images.Source: Getty Images.

These advances are undoubtedly exciting. But turning AI’s potential into viable treatments for patients remains challenging. Therapies still have to go through the yearslong process of human clinical trials and regulatory review. And what might look good in a computer model may not prove as efficacious or as safe in human cells: no AI-focused biotech company has yet brought a drug to market.

For now, we think the prudent way to think about AI and drug discovery is to recognize the technology as one of many structural trends that could propel a high rate of growth in biopharma in years to come. Investors might also want to focus on companies providing the picks and shovels that enable AI-driven drug research. These include DNA sequencing and related services, which are needed to help build the enormous datasets that fuel AI algorithms.

Medical device use and imaging

AI is also being deployed in imaging and diagnostics to better detect and treat disease, including cancer where early detection is critical. With mammograms, for example, AI-based 3D imaging is improving the chances of spotting invasive breast cancer earlier and reducing the number of images radiologists must review. A new blood-based screen uses AI and machine learning to identify DNA shed by cancer cells in the bloodstream. The test can look across multiple types of cancers, including those without early screening options, such as pancreatic, esophageal, ovarian, and liver cancer, and predict with 88% accuracy the organ associated with the DNA – a hit rate that is expected to improve over time.

Other disease categories are also benefiting, including aortic stenosis. This heart condition occurs when the aortic valve narrows and blood is unable to flow normally, straining the heart. Today, the disease is broadly underdiagnosed and undertreated: More than one million patients in the U.S. suffer from a severe form of aortic stenosis, but only around 100,000 people receive a transcatheter aortic valve replacement (TAVR) annually.

To close the gap, one TAVR manufacturer is partnering with health systems to use AI to comb through electronic medical records and flag patients who meet the criteria for treatment but, for one reason or another, have been overlooked. We think the effort will pay off over time, driving greater referral and treatment rates and better care for patients.

Pre- and post-procedural assistance

AI is also improving surgery outcomes. One leading maker of robotic-assisted surgery systems, for example, now records and collects data from procedures that incorporate its tools. Surgeries are segmented into stages and doctors can study their performance relative to a best-in-class outcome, which AI helps determine by correlating surgical techniques with patient outcomes. The data should allow surgeons to study a specific surgical activity and improve performance based on objective measures. And over time, AI may be able to warn a surgeon that he or she may have forgotten a step during a procedure or is about to do something that statistically has shown to increase the odds of error.

Likewise, when it comes to healthcare delivery, companies are beginning to use AI to record and code procedures in real time with the aim of eliminating one of the biggest sources of inefficiencies in the U.S. health system – payor/provider connectivity. In 2021, 17% of all healthcare claims were rejected, according to one study of insurers that participate in the federal marketplace in the U.S., in part because of improper coding.3 New AI-enabled systems could help reduce errors and open a market opportunity worth billions of dollars in annual revenue.

Managed Fund
Janus Henderson Global Research Growth Fund
Global Shares
........
1 Deoxyribonucleic acid (DNA) is the molecule that carries genetic information for the development and functioning of an organism. 2 Ribonucleic Acid (RNA) supports cell replication, growth, and protein synthesis. 3 Karen Pollitz, Justin Lo, Rayna Wallace, and Salem Mengistu, “Claims Denials and Appeals in ACA Marketplace Plans in 2021.” (Kaiser Family Foundation, 9 February 2023). IMPORTANT INFORMATION Health care industries are subject to government regulation and reimbursement rates, as well as government approval of products and services, which could have a significant effect on price and availability, and can be significantly affected by rapid obsolescence and patent expirations. Concentrated investments in a single sector, industry or region will be more susceptible to factors affecting that group and may be more volatile than less concentrated investments or the market as a whole. This information is issued by Janus Henderson Investors (Australia) Institutional Funds Management Limited (AFSL 444266, ABN 16 165 119 531). The information herein shall not in any way constitute advice or an invitation to invest. It is solely for information purposes and subject to change without notice. This information does not purport to be a comprehensive statement or description of any markets or securities referred to within. Any references to individual securities do not constitute a securities recommendation. Past performance is not indicative of future performance. The value of an investment and the income from it can fall as well as rise and you may not get back the amount originally invested. Whilst Janus Henderson Investors (Australia) Institutional Funds Management Limited believe that the information is correct at the date of this document, no warranty or representation is given to this effect and no responsibility can be accepted by Janus Henderson Investors (Australia) Institutional Funds Management Limited to any end users for any action taken on the basis of this information. All opinions and estimates in this information are subject to change without notice and are the views of the author at the time of publication. Janus Henderson Investors (Australia) Institutional Funds Management Limited is not under any obligation to update this information to the extent that it is or becomes out of date or incorrect.

1 topic

1 fund mentioned

Andy Acker
Portfolio Manager, Global Life Sciences
Janus Henderson

Andy Acker is a Portfolio Manager at Janus Henderson Investors responsible for managing the Global Life Sciences and Biotechnology strategies since 2007 and 2018, respectively. He also leads the firm’s Health Care Sector Research Team. Andy was...

I would like to

Only to be used for sending genuine email enquiries to the Contributor. Livewire Markets Pty Ltd reserves its right to take any legal or other appropriate action in relation to misuse of this service.

Personal Information Collection Statement
Your personal information will be passed to the Contributor and/or its authorised service provider to assist the Contributor to contact you about your investment enquiry. They are required not to use your information for any other purpose. Our privacy policy explains how we store personal information and how you may access, correct or complain about the handling of personal information.

Comments

Sign In or Join Free to comment